Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.226
Filtrar
1.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299843

RESUMO

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Assuntos
Membrana Celular , Fator de Iniciação 4E em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Internalização do Vírus , Animais , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Cadeias beta de Integrinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Tetraspaninas/metabolismo , Células Vero
2.
Nat Commun ; 14(1): 1148, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854760

RESUMO

Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown. Here, using nontransformed human jejunal enteroids (HIEs) that recapitulate the physiology of the gastrointestinal tract, we show that infectious GII.4 virions and virus-like particles are endocytosed using a unique combination of endosomal acidification-dependent clathrin-independent carriers (CLIC), acid sphingomyelinase (ASM)-mediated lysosomal exocytosis, and membrane wound repair pathways. We found that besides the known interaction of the viral capsid Protruding (P) domain with host glycans, the Shell (S) domain interacts with both galectin-3 (gal-3) and apoptosis-linked gene 2-interacting protein X (ALIX), to orchestrate GII.4 cell entry. Recognition of the viral and cellular determinants regulating HuNoV entry provides insight into the infection process of a non-enveloped virus highlighting unique pathways and targets for developing effective therapeutics.


Assuntos
Membrana Celular , Norovirus , Internalização do Vírus , Humanos , Clatrina , Norovirus/fisiologia , Transdução de Sinais , Membrana Celular/virologia
3.
J Microbiol Immunol Infect ; 56(2): 257-266, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36127231

RESUMO

BACKGROUND: The exploration of virology knowledge was limited by the optical technology for the observation of virus. Previously, a three-dimensional multi-resolution real-time microscope system (3D-MRM) was developed to observe the uptake of HIV-1-tat peptide-modified nanoparticles in cell membrane. In this study, we labeled HIV-1 virus-like particles (VLPs) with passivated giant quantum dots (gQDs) and recorded their interactive trajectories with human Jurkat CD4 cells through 3D-MRM. METHODS: The labeled of gQDs of the HIV-1 VLPs in sucrose-gradient purified viral lysates was first confirmed by Cryo-electronic microscopy and Western blot assay. After the infection with CD4 cells, the gQD-labeled VLPs were visualized and their extracellular and intracellular trajectories were recorded by 3D-MRM. RESULTS: A total of 208 prime trajectories was identified and classified into three distinct patterns: cell-free random diffusion pattern, directional movement pattern and cell-associated movement pattern, with distributions and mean durations were 72.6%/87.6 s, 9.1%/402.7 s and 18.3%/68.7 s, respectively. Further analysis of the spatial-temporal relationship between VLP trajectories and CD4 cells revealed the three stages of interactions: (1) cell-associated (extracellular) diffusion stage, (2) cell membrane surfing stage and (3) intracellular directional movement stage. CONCLUSION: A complete trajectory of HIV-1 VLP interacting with CD4 cells was presented in animation. This encapsulating method could increase the accuracy for the observation of HIV-1-CD4 cell interaction in real time and three dimensions.


Assuntos
Linfócitos T CD4-Positivos , Membrana Celular , HIV-1 , Microscopia Eletrônica , Pontos Quânticos , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Humanos , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD4-Positivos/virologia , HIV-1/fisiologia , HIV-1/ultraestrutura , Imageamento Tridimensional/métodos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Peptídeos Penetradores de Células/fisiologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Nanopartículas/ultraestrutura , Nanopartículas/virologia , Partículas Artificiais Semelhantes a Vírus/fisiologia , Microscopia Eletrônica/métodos
4.
J Virol ; 96(12): e0021522, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35608346

RESUMO

The baculovirus envelope protein GP64 is an essential component of the budded virus and is necessary for efficient virion assembly. Little is known regarding intracellular trafficking of GP64 to the plasma membrane, where it is incorporated into budding virions during egress. To identify host proteins and potential cellular trafficking pathways that are involved in delivery of GP64 to the plasma membrane, we developed and characterized a stable Drosophila cell line that inducibly expresses the AcMNPV GP64 protein and used that cell line in combination with a targeted RNA interference (RNAi) screen of vesicular protein trafficking pathway genes. Of the 37 initial hits from the screen, we validated and examined six host genes that were important for trafficking of GP64 to the cell surface. Validated hits included Rab GTPases Rab1 and Rab4, Clathrin heavy chain, clathrin adaptor protein genes AP-1-2ß and AP-2µ, and Snap29. Two gene knockdowns (Rab5 and Exo84) caused substantial increases (up to 2.5-fold) of GP64 on the plasma membrane. We found that a small amount of GP64 is released from cells in exosomes and that some portion of cell surface GP64 is endocytosed, suggesting that recycling helps to maintain GP64 at the cell surface. IMPORTANCE While much is known regarding trafficking of viral envelope proteins in mammalian cells, little is known about this process in insect cells. To begin to understand which factors and pathways are needed for trafficking of insect virus envelope proteins, we engineered a Drosophila melanogaster cell line and implemented an RNAi screen to identify cellular proteins that aid transport of the model baculovirus envelope protein (GP64) to the cell surface. For this we developed an experimental system that leverages the large array of tools available for Drosophila and performed a targeted RNAi screen to identify cellular proteins involved in GP64 trafficking to the cell surface. Since viral envelope proteins are often critical for production of infectious progeny virions, these studies lay the foundation for understanding how either pathogenic insect viruses (baculoviruses) or insect-vectored viruses (e.g., flaviviruses, alphaviruses) egress from cells in tissues such as the midgut to enable systemic virus infection.


Assuntos
Baculoviridae , Membrana Celular , Proteínas de Insetos , Proteínas do Envelope Viral , Animais , Baculoviridae/metabolismo , Linhagem Celular , Membrana Celular/virologia , Drosophila melanogaster/virologia , Proteínas de Insetos/genética , Interferência de RNA , Proteínas do Envelope Viral/metabolismo
5.
J Phys Chem Lett ; 13(21): 4642-4649, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35593652

RESUMO

Like all viral infections, SARS-CoV-2 acts at multiple levels, hijacking fundamental cellular functions and assuring its replication and immune system evasion. In particular, the viral 3' Open Reading Frame (ORF3a) codes for a hydrophobic protein, which embeds in the cellular membrane, where it acts as an ion viroporin and is related to strong inflammatory response. Here we report equilibrium and enhanced sampling molecular dynamic simulation of the SARS-CoV-2 ORF3a in a model lipid bilayer, showing how the protein permeabilizes the lipid membrane, via the formation of a water channel, which in turn assures ion transport. We report the free energy profile for both K+ and Cl- transfer from the cytosol to the extracellular domain. The important role of ORF3a in the viral cycle and its high conservation among coronaviruses may also make it a target of choice for future antiviral development, further justifying the elucidation of its mechanism at the atomistic level.


Assuntos
COVID-19 , Membrana Celular , Proteínas Viroporinas , Membrana Celular/virologia , Humanos , Lipídeos , SARS-CoV-2
6.
Nature ; 603(7902): 706-714, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104837

RESUMO

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Assuntos
COVID-19/patologia , COVID-19/virologia , Fusão de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Internalização do Vírus , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Chlorocebus aethiops , Convalescença , Feminino , Humanos , Soros Imunes/imunologia , Intestinos/patologia , Intestinos/virologia , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Mucosa Nasal/patologia , Mucosa Nasal/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Técnicas de Cultura de Tecidos , Virulência , Replicação Viral
7.
Comput Math Methods Med ; 2022: 9735626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154362

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was characterized as a pandemic by the World Health Organization (WHO) in Dec. 2019. SARS-CoV-2 binds to the cell membrane through spike proteins on its surface and infects the cell. Furin, a host-cell enzyme, possesses a binding site for the spike protein. Thus, molecules that block furin could potentially be a therapeutic solution. Defensins are antimicrobial peptides that can hypothetically inhibit furin because of their arginine-rich structure. Theta-defensins, a subclass of defensins, have attracted attention as drug candidates due to their small size, unique structure, and involvement in several defense mechanisms. Theta-defensins could be a potential treatment for COVID-19 through furin inhibition and an anti-inflammatory mechanism. Note that inflammatory events are a significant and deadly condition that could happen at the later stages of COVID-19 infection. Here, the potential of theta-defensins against SARS-CoV-2 infection was investigated through in silico approaches. Based on docking analysis results, theta-defensins can function as furin inhibitors. Additionally, a novel candidate peptide against COVID-19 with optimal properties regarding antigenicity, stability, electrostatic potential, and binding strength was proposed. Further in vitro/in vivo investigations could verify the efficiency of the designed novel peptide.


Assuntos
Antivirais/farmacologia , COVID-19/metabolismo , Defensinas/farmacologia , Desenho de Fármacos , Furina/antagonistas & inibidores , Animais , Peptídeos Antimicrobianos/química , Domínio Catalítico , Membrana Celular/virologia , Simulação por Computador , Mineração de Dados , Furina/química , Humanos , Inflamação , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/química , Software , Glicoproteína da Espícula de Coronavírus , Eletricidade Estática , Tratamento Farmacológico da COVID-19
8.
Plant Cell Rep ; 41(2): 281-291, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34665312

RESUMO

The genome of most plant viruses consists of a single positive-strand of RNA (+ ssRNA). Successful replication of these viruses is fully dependent on the endomembrane system of the infected cells, which experiences a massive proliferation and a profound reshaping that enables assembly of the macromolecular complexes where virus genome replication occurs. Assembly of these viral replicase complexes (VRCs) requires a highly orchestrated interplay of multiple virus and co-opted host cell factors to create an optimal microenvironment for efficient assembly and functioning of the virus genome replication machinery. It is now widely accepted that VRC formation involves the recruitment of high levels of sterols, but the specific role of these essential components of cell membranes and the precise molecular mechanisms underlying sterol enrichment at VRCs are still poorly known. In this review, we intend to summarize the most relevant knowledge on the role of sterols in ( +)ssRNA virus replication and discuss the potential of manipulating the plant sterol pathway to help plants fight these infectious agents.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Fitosteróis/metabolismo , Vírus de Plantas/fisiologia , Plantas/metabolismo , Plantas/virologia , Membrana Celular/metabolismo , Membrana Celular/virologia , Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vírus de RNA/patogenicidade , Vírus de RNA/fisiologia , Replicação Viral
9.
J Sep Sci ; 45(2): 456-467, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34729910

RESUMO

Chloroquine and hydroxychloroquine have been studied since the early clinical treatment of SARS-CoV-2 outbreak. Considering these two chiral drugs are currently in use as the racemate, high-expression angiotensin-converting enzyme 2 cell membrane chromatography was established for investigating the differences of two paired enantiomers binding to angiotensin-converting enzyme 2 receptor. Molecular docking assay and detection of SARS-CoV-2 spike pseudotyped virus entry into angiotensin-converting enzyme 2-HEK293T cells were also conducted for further investigation. Results showed that each single enantiomer could bind well to angiotensin-converting enzyme 2, but there were differences between the paired enantiomers and corresponding racemate in frontal analysis. R-Chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine. Moreover, each single enantiomer was proved effective compared with the control group; compared with S-chloroquine or the racemate, R-chloroquine showed better inhibitory effects at the same concentration. As for hydroxychloroquine, R-hydroxychloroquine showed better inhibitory effects than S-hydroxychloroquine, but it slightly worse than the racemate. In conclusion, R-chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability and inhibitory effects compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine (racemate), while the effect of preventing SARS-CoV-2 pseudovirus from entering cells was weaker than R-hydroxychloroquine/hydroxychloroquine (racemate).


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Cloroquina/química , Cloroquina/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/química , Antivirais/farmacologia , COVID-19/virologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Células HEK293 , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Receptores Virais/antagonistas & inibidores , Receptores Virais/química , Receptores Virais/efeitos dos fármacos , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Solventes , Estereoisomerismo , Pseudotipagem Viral , Internalização do Vírus , Tratamento Farmacológico da COVID-19
10.
mBio ; 12(6): e0325421, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34872357

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Gag selects and packages the HIV RNA genome during virus assembly. However, HIV-1 RNA constitutes only a small fraction of the cellular RNA. Although Gag exhibits a slight preference to viral RNA, most of the cytoplasmic Gag proteins are associated with cellular RNAs. Thus, it is not understood how HIV-1 achieves highly efficient genome packaging. We hypothesize that besides RNA binding, other properties of Gag are important for genome packaging. Many Gag mutants have assembly defects that preclude analysis of their effects on genome packaging. To bypass this challenge, we established complementation systems that separate the particle-assembling and RNA-binding functions of Gag: we used a set of Gag proteins to drive particle assembly and an RNA-binding Gag to package HIV-1 RNA. We have developed two types of RNA-binding Gag in which packaging is mediated by the authentic nucleocapsid (NC) domain or by a nonviral RNA-binding domain. We found that in both cases, mutations that affect the multimerization or plasma membrane anchoring properties of Gag reduce or abolish RNA packaging. These mutant Gag can coassemble into particles but cannot package the RNA genome efficiently. Our findings indicate that HIV-1 RNA packaging occurs at the plasma membrane and RNA-binding Gag needs to multimerize on RNA to encapsidate the viral genome. IMPORTANCE To generate infectious virions, HIV-1 must package its full-length RNA as the genome during particle assembly. HIV-1 Gag:RNA interactions mediate genome packaging, but the mechanism remains unclear. Only a minor portion of the cellular RNA is HIV-1 RNA, and most of the RNAs associated with cytoplasmic Gag are cellular RNAs. However, >94% of the HIV-1 virions contain viral RNA genome. We posited that, besides RNA binding, other properties of Gag contribute to genome packaging. Using two complementation systems, we examined features of Gag that are important for genome packaging. We found that the capacities for Gag to multimerize and to anchor at the plasma membrane are critical for genome packaging. Our results revealed that Gag needs to multimerize on viral RNA at the plasma membrane in order to package RNA genome.


Assuntos
Membrana Celular/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , RNA Viral/metabolismo , Vírion/fisiologia , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Genoma Viral , HIV-1/genética , Humanos , RNA Viral/química , RNA Viral/genética , Vírion/genética
11.
Viruses ; 13(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34960711

RESUMO

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV-host interactions and provides new strategies to control PDCoV infection.


Assuntos
Deltacoronavirus/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , Tripsina/metabolismo , Ligação Viral , Animais , Carboidratos , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Intestinos/metabolismo , Intestinos/virologia , Ácido Periódico/farmacologia , Suínos , Doenças dos Suínos/virologia , Tripsina/farmacologia
12.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960740

RESUMO

Understanding and modulating the early steps in oncogenic Human Papillomavirus (HPV) infection has great cancer-preventative potential, as this virus is the etiological agent of virtually all cervical cancer cases and is associated with many other anogenital and oropharyngeal cancers. Previous work from our laboratory has identified cell-surface-expressed vimentin as a novel HPV16 pseudovirus (HPV16-PsVs)-binding molecule modulating its infectious potential. To further explore its mode of inhibiting HPV16-PsVs internalisation, we supplemented it with exogenous recombinant human vimentin and show that only the globular form of the molecule (as opposed to the filamentous form) inhibited HPV16-PsVs internalisation in vitro. Further, this inhibitory effect was only transient and not sustained over prolonged incubation times, as demonstrated in vitro and in vivo, possibly due to full-entry molecule engagement by the virions once saturation levels have been reached. The vimentin-mediated delay of HPV16-PsVs internalisation could be narrowed down to affecting multiple steps during the virus' interaction with the host cell and was found to affect both heparan sulphate proteoglycan (HSPG) binding as well as the subsequent entry receptor complex engagement. Interestingly, decreased pseudovirus internalisation (but not infection) in the presence of vimentin was also demonstrated for oncogenic HPV types 18, 31 and 45. Together, these data demonstrate the potential of vimentin as a modulator of HPV infection which can be used as a tool to study early mechanisms in infectious internalisation. However, further refinement is needed with regard to vimentin's stabilisation and formulation before its development as an alternative prophylactic means.


Assuntos
Papillomavirus Humano 16/fisiologia , Vimentina/farmacologia , Internalização do Vírus , Alphapapillomavirus/fisiologia , Animais , Membrana Celular/virologia , Feminino , Células HEK293 , Proteoglicanas de Heparan Sulfato/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Papillomavirus/virologia , Conformação Proteica , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Vimentina/química , Pseudotipagem Viral , Vírion/fisiologia
13.
PLoS Pathog ; 17(11): e1010126, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843591

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) infects target cells primarily through cell-to-cell routes. Here, we provide evidence that cellular protein M-Sec plays a critical role in this process. When purified and briefly cultured, CD4+ T cells of HTLV-1 carriers, but not of HTLV-1- individuals, expressed M-Sec. The viral protein Tax was revealed to mediate M-Sec induction. Knockdown or pharmacological inhibition of M-Sec reduced viral infection in multiple co-culture conditions. Furthermore, M-Sec knockdown reduced the number of proviral copies in the tissues of a mouse model of HTLV-1 infection. Phenotypically, M-Sec knockdown or inhibition reduced not only plasma membrane protrusions and migratory activity of cells, but also large clusters of Gag, a viral structural protein required for the formation of viral particles. Taken together, these results suggest that M-Sec induced by Tax mediates an efficient cell-to-cell viral infection, which is likely due to enhanced membrane protrusions, cell migration, and the clustering of Gag.


Assuntos
Membrana Celular/virologia , Modelos Animais de Doenças , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/transmissão , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Fatores de Necrose Tumoral/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Membrana Celular/metabolismo , Movimento Celular , Técnicas de Cocultura , Produtos do Gene tax/genética , Infecções por HTLV-I/metabolismo , Infecções por HTLV-I/virologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Necrose Tumoral/genética , Proteínas Estruturais Virais/genética
14.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830279

RESUMO

About 8% of our genome is composed of sequences from Human Endogenous Retroviruses (HERVs). The HERV-K (HML.2) family, here abbreviated HML.2, is able to produce virus particles that were detected in cell lines, malignant tumors and in autoimmune diseases. Parameters and properties of HML.2 released from teratocarcinoma cell lines GH and Tera-1 were investigated in detail. In most experiments, analyzed viruses were purified by density gradient centrifugation. HML.2 structural proteins, reverse transcriptase (RT) activity, viral RNA (vRNA) and particle morphology were analyzed. The HML.2 markers were predominantly detected in fractions with a buoyant density of 1.16 g/cm3. Deglycosylation of TM revealed truncated forms of transmembrane (TM) protein. Free virions and extracellular vesicles (presumably microvesicles-MVs) with HML.2 elements, including budding intermediates, were detected by electron microscopy. Viral elements and assembled virions captured and exported by MVs can boost specific immune responses and trigger immunomodulation in recipient cells. Sequencing of cDNA clones demonstrated exclusive presence of HERV-K108 env in HML.2 from Tera-1 cells. Not counting two recombinant variants, four known env sequences were found in HML.2 from GH cells. Obtained results shed light on parameters and morphology of HML.2. A possible mechanism of HML.2-induced diseases is discussed.


Assuntos
Capsídeo/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Vesículas Extracelulares/virologia , Produtos do Gene env/metabolismo , Genes env , RNA Viral/genética , Teratocarcinoma/metabolismo , Teratocarcinoma/virologia , Envelope Viral/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/virologia , Centrifugação com Gradiente de Concentração/métodos , Retrovirus Endógenos/isolamento & purificação , Produtos do Gene env/genética , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Teratocarcinoma/patologia , Transfecção , Montagem de Vírus/genética
15.
Mol Cell ; 81(24): 5039-5051.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784509

RESUMO

Cyclic oligonucleotide-based antiphage signaling systems (CBASS) are antiviral defense operons that protect bacteria from phage replication. Here, we discover a widespread class of CBASS transmembrane (TM) effector proteins that respond to antiviral nucleotide signals and limit phage propagation through direct membrane disruption. Crystal structures of the Yersinia TM effector Cap15 reveal a compact 8-stranded ß-barrel scaffold that forms a cyclic dinucleotide receptor domain that oligomerizes upon activation. We demonstrate that activated Cap15 relocalizes throughout the cell and specifically induces rupture of the inner membrane. Screening for active effectors, we identify the function of distinct families of CBASS TM effectors and demonstrate that cell death via disruption of inner-membrane integrity is a common mechanism of defense. Our results reveal the function of the most prominent class of effector protein in CBASS immunity and define disruption of the inner membrane as a widespread strategy of abortive infection in bacterial phage defense.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/patogenicidade , Membrana Celular/virologia , Escherichia coli/virologia , Yersinia/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriófagos/imunologia , Morte Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno , Ligantes , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Transdução de Sinais , Relação Estrutura-Atividade , Yersinia/genética
16.
Cells ; 10(10)2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685515

RESUMO

Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.


Assuntos
Retículo Endoplasmático/virologia , Complexo de Golgi/virologia , Via Secretória/fisiologia , Vírus/isolamento & purificação , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Membrana Celular/virologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos
17.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583992

RESUMO

Membrane-associated mucins protect epithelial cell surfaces against pathogenic threats by serving as nonproductive decoys that capture infectious agents and clear them from the cell surface and by erecting a physical barrier that restricts their access to target receptors on host cells. However, the mechanisms through which mucins function are still poorly defined because of a limited repertoire of tools available for tailoring their structure and composition in living cells with molecular precision. Using synthetic glycopolymer mimetics of mucins, we modeled the mucosal glycocalyx on red blood cells (RBCs) and evaluated its influence on lectin (SNA) and virus (H1N1) adhesion to endogenous sialic acid receptors. The glycocalyx inhibited the rate of SNA and H1N1 adhesion in a size- and density-dependent manner, consistent with the current view of mucins as providing a protective shield against pathogens. Counterintuitively, increasing the density of the mucin mimetics enhanced the retention of bound lectins and viruses. Careful characterization of SNA behavior at the RBC surface using a range of biophysical and imaging techniques revealed lectin-induced crowding and reorganization of the glycocalyx with concomitant enhancement in lectin clustering, presumably through the formation of a more extensive glycan receptor patch at the cell membrane. Our findings indicate that glycan-targeting pathogens may exploit the biophysical and biomechanical properties of mucins to overcome the mucosal glycocalyx barrier.


Assuntos
Eritrócitos/metabolismo , Glicocálix/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo , Biomimética/métodos , Membrana Celular/metabolismo , Membrana Celular/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Eritrócitos/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Mucosa/metabolismo , Mucosa/virologia , Receptores de Superfície Celular/metabolismo
18.
Mol Biol Cell ; 32(20)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570653

RESUMO

Viruses are pathogenic agents that can infect all varieties of organisms, including plants, animals, and humans. These microscopic particles are genetically simple as they encode a limited number of proteins that undertake a wide range of functions. While structurally distinct, viruses often share common characteristics that have evolved to aid in their infectious life cycles. A commonly underappreciated characteristic of many deadly viruses is a lipid envelope that surrounds their protein and genetic contents. Notably, the lipid envelope is formed from the host cell the virus infects. Lipid-enveloped viruses comprise a diverse range of pathogenic viruses, which often lead to high fatality rates and many lack effective therapeutics and/or vaccines. This perspective primarily focuses on the negative-sense RNA viruses from the order Mononegavirales, which obtain their lipid envelope from the host plasma membrane. Specifically, the perspective highlights the common themes of host cell lipid and membrane biology necessary for virus replication, assembly, and budding.


Assuntos
Membrana Celular/virologia , Interações Hospedeiro-Patógeno/fisiologia , Metabolismo dos Lipídeos/fisiologia , Vírus de RNA de Sentido Negativo/fisiologia , Vírus de RNA de Sentido Negativo/patogenicidade , Animais , Membrana Celular/metabolismo , Humanos , Proteínas da Matriz Viral/metabolismo , Replicação Viral/fisiologia
19.
Anal Bioanal Chem ; 413(29): 7157-7178, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34490501

RESUMO

The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.


Assuntos
Membrana Celular/virologia , Interações Hospedeiro-Patógeno/fisiologia , Biologia Molecular/métodos , Membrana Celular/química , Membrana Celular/metabolismo , Glicosaminoglicanos/metabolismo , HIV-1/patogenicidade , HIV-1/fisiologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Humanos , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Norovirus/patogenicidade , Norovirus/fisiologia , Polissacarídeos/metabolismo , Vírus 40 dos Símios/patogenicidade , Vírus 40 dos Símios/fisiologia , Internalização do Vírus
20.
Immunol Res ; 69(6): 496-519, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34410575

RESUMO

The SARS-CoV-2 S protein on the membrane of infected cells can promote receptor-dependent syncytia formation, relating to extensive tissue damage and lymphocyte elimination. In this case, it is challenging to obtain neutralizing antibodies and prevent them through antibodies effectively. Considering that, in the current study, structural domain search methods are adopted to analyze the SARS-CoV-2 S protein to find the fusion mechanism. The results show that after the EF-hand domain of S protein bound to calcium ions, S2 protein had CaMKII protein activities. Besides, the CaMKII_AD domain of S2 changed S2 conformation, facilitating the formation of HR1-HR2 six-helix bundles. Apart from that, the Ca2+-ATPase of S2 pumped calcium ions from the virus cytoplasm to help membrane fusion, while motor structures of S drove the CaATP_NAI and CaMKII_AD domains to extend to the outside and combined the viral membrane and the cell membrane, thus forming a calcium bridge. Furthermore, the phospholipid-flipping-ATPase released water, triggering lipid mixing and fusion and generating fusion pores. Then, motor structures promoted fusion pore extension, followed by the cytoplasmic contents of the virus being discharged into the cell cytoplasm. After that, the membrane of the virus slid onto the cell membrane along the flowing membrane on the gap of the three CaATP_NAI. At last, the HR1-HR2 hexamer would fall into the cytoplasm or stay on the cell membrane. Therefore, the CaMKII_like system of S protein facilitated membrane fusion for further inducing syncytial multinucleated giant cells.


Assuntos
COVID-19/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Células Gigantes/metabolismo , Fusão de Membrana/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Membrana Celular/fisiologia , Membrana Celular/virologia , Células Gigantes/virologia , Humanos , SARS-CoV-2 , Alinhamento de Sequência , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...